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Structured Output Prediction: Setting Part: Minimum Feedback Vertex Set

e Predict y € ) for a given input variable x € X. o Choose forest-shaped partition (A, B).

e Dependencies between y; specified by parameterized graphical model o Like this summation over )/ 4 feasible. E EB %
Gg=(V¢€) e Assumption: all nodes equally important.

o Parameters are denoted by w. o Choose a minimum feedback vertex set. e ams  weesesees

e The score (negative energy) of (x,y) is given by (w, ¢(x,y)). e Greedy randomized growing of forests. :.f: .

o @(x,y) the sufficient statistics follow from the graphical model and its o Breadth-first vs. depth-first variant. .Il"'-_._. L %%
parameterization. e BFS close to optimal for 4-connected grid. :::.‘DFS r :...I.B..F..S".".

Learning

Clamp: Marginal MAP

Conditional Random Field (CRF) models the posterior distribution:

1 o Goal: find state to include in ).
P(y|x,w) = Z(x, w) exp((w, @(x,y))) Z(x, W) = ZEXP(<W> ?(x,y))) o Greedy approach: include state which increases the lower bound the most:
o | < = 3 exp((w, d(x,y)))
Regularized Maximum Likelihood Learning: Y5 a;gg;x“éh ’ ’
1 v o ; A e The marginal MAP problem.
W N Z —(w, (x",y")) +log Z(x", w) | + EHWHQ e Recent message-passing algorithms for marginal MAP which include
| - max-product and sum-product updates.

= Need to compute the partition sum Z(x,w)! e Alternative: simply use MAP algorithm. Advantage: More efficient!

Two approaches for given P(y|x). Correspond to different loss functions in a
minimum Bayes risk framework.

o Efficient computations: two passes through the tree for each clamping state
in ), and decomposition.
o Batch Learning (cutting planes like):

e MAP prediction. Well-studied setting (graph-cut, max-product, ... )

y' = argmax<w, ¢(X7 Y)> s zero-one loss 1. Full parameter learning using L-BFGS for current bound.
>/ 2. Tighten bound for each example with current parameters.
e max-marginal (MPM). More challenging (often done by Gibbs sampling) 3. Repeat.
yi = argmax P(y;|x) A Hamming loss e Online Learning (stochastic gradient descent):
Vi 1. Sample an example.
2. Tighten bound for this particular example with current parameters.
3. SGD step.
Lower Bounding the Structured Output Loss 4. Repeat.

_ - | | o o Budget version: keep size ), within a budget.
Given a partition of the variables V into two sets A and 5. Trivial lower

bound by summing only over a subset V. C Vg:

Z(x,w)> > > exp((w, d(x,y))) = Z(x,w, B, V)

Experiment: Binary Image Denoising
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Can do this for several different partitions D = {(A1, B1), - .., (Am, Bum)} and S 220 < 1 - MF;MMPM *
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corresponding states Z = {Yp, ...,V }. Let Z™:= Z(x,w, By, Yy ). E o 5
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Combining the bounds to get new lower bounds: 3 140! ~ bimodal Il & 2
. Arithmetic mean: % 120 \ \ \ +un|m0da| N | | | | | | |
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777 (X W) = — /M number of states for the FVS number of states for the FVS
7 M
m=1
O Geometric mean: Train | Pseudo- Composite | Contrastive Part & Clamp
l/M Prediction likelihood likelihood | divergence batch online
M s MAP 15.58 &= 4.11|12.02 £ 3.50 | 7.01 = 1.71 | 6.14 £ 1.27 | 5.16 + 0.77
Zg’D’Z(x W) .: H Zm S MPM 11.86 & 3.40 | 9.33 4+ 2.69 | 6.72 & 1.67 |5.32 & 1.12 5.20 = 0.80
) ' 5 clamped MPM | 1.77 £0.25 | 1.80 £ 0.26 |1.96 & 0.22 | 1.90 £ 0.22 | 2.23 + 0.25
m=1 5 MAP 5.28 + 1.47 | 4.43 £ 1.26 |2.39 = 0.47 | 2.40 & 0.50  2.40 = 0.46
, , _ £ MPM 413 +£1.18 | 3.66 2 0.96 |2.37 £ 0.45 2.40 & 0.42 | 2.42 & 0.43
e Maximum (not differentiable w.r.t. w): S clamped MPM | 0.98 0.2 | 1.01£0.21 |1.05 4 0.21  1.03 £0.22 1.17 4 0.23

Z™P2(x, w) := max Z"™

m Conclusions

e Simple lower bound that leads to good parameter estimates in practice.

Relation between the three bounds:

mD,Z 2D, 2 gD,2
A (X, w) = Z27%(x, w) > Z87%(x, w) o Generalizes pseudolikelihood and composite likelihood.

o Efficient if |} | small, go through graph twice for each state.
Composite Likelihood & Non-local Contrastive Divergence e Would not expect this to work well in settings where posteriori has large
entropy.

e Inspired by composite likelihood and pseudolikelihood.
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